JClass HiGrid"
Programmer’s Guide

Version 6.3
for Java 2 (JDK 1.3.1 and higher)

The Unique RAD Outline-grid
for Hierarchical Dynamic Data

QUEST
SOFTWARE"

8001 Irvine Center Drive
Irvine, CA 92618
949-754-8000
www.quest.com

April 2004 RefNo: PRGDE-JCHGD/630-04/2004

© Copyright Quest Software, Inc. 2004. All rights reserved.

This guide contains proprietary information, which is protected by copyright. The software described in this
guide is furnished under a software license or nondisclosure agreement. This software may be used or copied
only in accordance with the terms of the applicable agreement. No part of this guide may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying and recording
for any purpose other than the purchaser's personal use without the written permission of Quest Software,
Inc.

Warranty

The information contained in this document is subject to change without notice. Quest Software makes no
warranty of any kind with respect to this information. QUEST SOFTWARE SPECIFICALLY
DISCLAIMS THE IMPLIED WARRANTY OF THE MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Quest Software shall not be liable for any direct, indirect, incidental,
consequential, or other damage alleged in connection with the furnishing or use of this information.

Trademarks

JClass, JClass Chart, JClass Chart 3D, JClass DataSource, JClass Elements, JClass Field, JClass HiGrid,
JClass JarMaster, JClass LiveTable, JClass PageLayout, JClass ServerChart, JClass ServerReport,

JClass DesktopViews, and JClass ServerViews are trademarks of Quest Software, Inc. Other trademarks and
registered trademarks used in this guide are property of their respective owners.

World Headquarters

8001 Irvine Center Drive
Irvine, CA 92618
www.quest.com

e-mail: info@quest.com

U.S. and Canada: 949.754.8000

Please refer to our Web site for regional and international office information.

This product includes software developed by the Apache Software Foundation http://www.apache.org/.

The JPEG Encoder and its associated classes are Copyright © 1998, James R. Weeks and BioElectroMech.
This product is based in part on the work of the Independent JPEG Group.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions, all
files included with the source code, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials provided
with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

http://www.quest.com
http://www.apache.org/

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

This product includes software developed by the JDOM Project (http://www.jdom.org/). Copyright © 2000-
2002 Brett McLaughlin & Jason Hunter, all rights reserved. Redistribution and use in source and binary
forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions,
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of
conditions, and the disclaimer that follows these conditions in the documentation and/or other
materials provided with the distribution.

3. The name "JDOM" must not be used to endorse or promote products derived from this
software without prior written permission. For written permission, please contact

license@jdom.org.

4. Products derived from this software may not be called "JDOM", nor may "JDOM" appear in
their name, without prior written permission from the JDOM Project Management

(pm@jdom.org).

THIS SOFTWARE IS PROVIDED “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE JDOM AUTHORS OR THE PROJECT
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

http://www.jdom.org/
mailto:license@jdom.org
mailto:pm@jdom.org

Table of Contents

Preface.................cccciaia i i s
Introducing JClass HiGrid .

Assumptions

Typographical Conventlons in thls Manual
Overview of the Manual .

API Reference .

Licensing . .

Related Documents .

About Quest . .

Contacting Quest Software

Customer Support . .
Product Feedback and Announcements

N OO OOt OO s WO -k

Part I: Using JClass HiGrid

1

JClass HiGrid Overviewcccrvcnnrnenesanall

1.1 Introduction . . . B B |
1.2 JClass HiGrid’s Major Classes and Interfaoes 18
1.3 Operationson Cells e s 22
1.4 The Data Model for JClass H1Gr1d S s |
1.5 Internationalization 37

Properties of JClass HiGrid.39

2.1 Introduction ¢
2.2 Programming JClass H1Gr1d . 1]
2.3 Cell Formats and Cell Styles 40
2.4 Data Rows and Summary Lines 46
2.5 JClass HiGrid Listenersand Events 55
2.6 JClass DataSource Events and Listeners 59
2.7 PrintingaGrid 70
JClassHiGridBeanscciiiiinnnnnnnnnns 73
3.1 JClass HiGrid JavaBeans 73

3.2 Properties of JCHiGridBean 75

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

Using the Customizer . .
Overview of the Customizer’s Functlons
The Serialization Tab .

Specifying the Data Sources

Joining Tables . .

The Driver Table Panel .

Driver Limitations

Setting Properties on the Format Tab
Setting a Column’s Edit Status Properties
The JCHiGridExternalDS Bean .

.78
.79
. 81
. 83
. 856
. 86
. 86
. 87
. 96
. 97

Displaying and EditingCells99

4.1
4.2
4.3
4.4
4.5

Overview . .

Default Cell Rendermg and Edltlng
Rendering Cells

Editing Cells

The JCCelllnfo Interface

.99

100
101
108
117

JClass DataSourceOverviewccvveue.n... 119

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

Introduction

The Two Ways of Managmg Data Bmdmg 1nJClass DataSource
Using JClass DataSource with Visual Components .
JClass DataSource and the JClass Data Bound Components .
The Data Model’s Highlights .

The Meta Data Model .

Setting the Data Model

JClass DataSource’s Main Classes and Interfaces

Examples . .

Binding the data to the source VlaJDBC

The Data “Control” Components

Custom Implementations . .
Use of Customizers to Specify the Connecuon to theJDBC .
Classes and Methods of JClass DataSource

119
120
120
121
123
124
129
139
141
143
144
145
147
147

TheDataModel i vuernnernn=a. 151

6.1
6.2
6.3
6.4

Introduction .

Accessing a Database .

Specifying Tables and Fields at Each Level
Setting the Commit Policy .

151
152
155
156

Contents

6.5 Methods for Traversingthe Data 157

6.6 TheResultSet15
6.7 Virtual Columns . . . B
6.8 Handling Data Integrity Vlolatlons T (0%
7 JClass DataSource Beans.165
7.1 Introduction . . . C e e oo o165
7.2 Installing JClass DataSource sJAR ﬁles e o 166
73 TheDataBean167
7.4 The Tree Data Bean . . . A V4]
7.5 The Data Navigator and Data Bound Components ... 183
7.6 Custom Implementations 184

8 DataSource’s Data Bound Components.185

8.1 Introduction . . . T £
8.2 The Types of Data Bound Components T £
8.3 The Navigator and its Functions 187
8.4 Data Binding the Other Components 193

9 SampleProgramscccivrcnnrnnneaaa.199

9.1 The Sample Database19
9.2 The DemoData Program19
93 BaseExample00 00202
9.4 BaseButton Example 204
9.5 Cell Validation Example 204
9.6 Row Validation Example 205
9.7 Exception Message Example 207
9.8 Popup MenuExample 207

Part Il: Reference Appendices

A Bean PropertiesReference.211

A.1 HiGridBean . . . A
A2 H1Gr1dBeanComponent e e s 212
A.3 HiGridBeanCustomizer 213
A4 DataBean .. .213
A5 DataBeanComponent214
A.6 DataBeanCustomizer 215

Contents iii

A7

A8

A9

A.10
A1l
A12
A.13
A.l4
Al
A.16

Distributing Applets and Applications

B.1

Colors and Fonts

C.1
C2
C3

TreeDataBean . ..
TreeDataBeanComponent .
TreeDataBeanCustomizer
DSdbJNavigator .
DSdb]TextField .
DSdbJImage
DSdbJCheckbox .
DSdb]List

DSdb]TextArea
DSdb]Label .

Using JarMaster to Customize the Deployment Archive

Colorname Values .
RGB Color Values .

Fonts

215
216
217
217
220
223
224
227
230
233

iv

Contents

Preface

Introducing JClass HiGrid wm Assumptions wm Typographical Conventions in this Manual
Overview of the Manual wm APl Reference wm Licensing wm Related Documents wm About Quest
Contacting Quest Software wm Customer Support m Product Feedback and Announcements

Introducing JClass HiGrid

Database applications that require an expandable grid to display the graphic
representation of master-detail relationships have a new Java tool: JClass HiGrid. Its
collapsible grid is an excellent tool for allowing top-down exploration and navigation to
detail levels of arbitrary depth. A versatile data binding tool, called JClass DataSource, is
the engine that drives all data retrieval for the grid. You can use it for more generalized
data binding tasks spanning the whole set of JClass products. In addition,

JClass DataSource provides a set of data bound AWT and Swing components.

Because its design is based on the Model-View-Controller (MVC) paradigm,

JClass HiGrid is conceptually straightforward, being both the view and the controller,
while JClass DataSource functions as the model. Ultimately, a grid is a collection of cells.
JClass HiGrid’s cell classes extend the capabilities in com.k1g.jclass.cell to support
rendering, editing, and some elementary validating operations. As far as cells are
concerned, JClass DataSource remains the model, while a cell renderer is the view and a
cell editor is the controller. This design decouples the way that a cell is edited from the
way that it is displayed, allowing such flexible scenarios as having a cell containing a
Boolean quantity display it as an icon, while its editor may employ a checkbox, a String
value, or combo box with true/false choices. Extended editors are available for more
specialized items. For instance, a date field is edited with a drop-down calendar.

JClass DesktopViews makes the full range of data bound components available, where
JClass DataSource is used as the data binding layer for tables, charts, and fields requiring
specialized validation. It may be used with any database for which a JDBC (Java
Database Connectivity) driver exists or, through a JDBC-ODBC bridge, for which an
ODBC driver exists. Its primary purpose is to bind to databases that have JDBC drivers,
but it can also be used with non-database sources such as text files, or it can act as a
supplier of information extracted from an “in-memory database” whose values are
created dynamically at run-time. If used within an Integrated Development Environment
(IDE), JClass HiGrid’s Bean makes it particularly easy to bind to a data source, issue SQL
statements, and retrieve and display the resulting data tables.

JClass DataSource manages circumstances in which the underlying structure of the data
design is a tree. Because Java does not define a Tree data structure, a completely general
tree model is defined within JClass DataSource itselfl.

1. The TreeMode] interface is used for this purpose. The more specific interface is DataMode, which encapsulates two
types of trees, the MetaDataTree and the DataModelTree. Each of these has its own interface.

Feature Overview

JClass HiGrid and JClass DataSource are JavaBeans that facilitate the presentation of data
extracted from a database or elsewhere in a hierarchical, or master-detail, form. Their
full-featured customizers can be used in IDEs to quickly develop a data retrieval
application. JClass HiGrid’s custom property editor exhibits a highly interactive interface
that allows end-users to perform all the common data operations without extensive
coding. Moreover, for those whose application may demand more in-depth
programming, the products’ APIs contain a number of helper methods designed to make
common tasks easy to accomplish.

You can set the properties of JClass HiGrid components to determine how your data
entry elements will look and behave. You can:

m Modify the number and arrangement of hierarchical levels. Customizers allow you to
add or remove tables, fields, and joins as your project matures and your needs
change.

m Include columns whose contents are computed from existing fields and, if necessary,
other generated fields.

m Include header and footer columns which can contain aggregate information. For
instance, a footer column may display the total amount of a number of purchase
orders where each row in a table has a field containing the individual amount for that
order.

m Present fields that contain various database and non-database types, including
pictures.

m Use JClass Field components in cells to validate data entry operations.

JClass HiGrid also provides several methods which:

m Simplify connecting to a database, and allow you to build database applications more
quickly using JDBC-ODBC bridge drivers or native-protocol all-Java drivers.

Support transaction management.

Permit you to control the appearance of the graphical user interface components as
well as controlling the type of operation the end-user is permitted to perform on the
records.

Other highlights of JClass HiGrid:
m JClass HiGrid is easy to configure (subclassable) or replicate.

m Events in JClass HiGrid derive from HiGridEvent, a base class for about a dozen
specific grid events. The delegation event model means that you need only listen for
the events in which you are interested.

Listeners for these events all have Adapter classes that you can subclass.

Many interfaces have Default versions.

2

Preface

m Formatting blocks of cells in the grid has been simplified by introducing
Cell1Styles classes. There are Default...Cel1Style classes for all five types of
rows in JClass HiGrid.

m The header row can be made to temporarily replace the row above the pointer,
ensuring that a copy of the header row is always visible even when scrolling a large
table.

m Rows can be copied and pasted.
m Scrollbars can be placed on either edge of the grid, right or left, top or bottom.

m A “cursor tracking” mechanism makes it possible to change the pointer’s icon
depending on its location.

m The edit status column, which is used to mark edited rows, is an optional item.
m Java 2-style printing is supported.

m There is a dispose() method to ensure unused grids don’t remain in memory.

JClass HiGrid may be used in conjunction with Quest’s JClass Field, JClass LiveTable,
and JClass Chart. These products permit data binding as well as providing you with
additional Java components that complement or replace their equivalent AWT and Swing
components.

All JClass HiGrid components are written entirely in Java; so as long as the Java
implementation for a particular platform works, JClass HiGrid will work.

You can freely distribute Java applets and applications containing JClass components
according to the terms of the License Agreement that appears at install time.

Assumptions

This manual assumes that you have some experience with the Java programming
language. You should have a basic understanding of object-oriented programming and
Java programming concepts such as classes, methods, and packages before proceeding
with this manual. See Related Documents later in this section of the manual for additional
sources of Java-related information.

Preface 3

Typographical Conventions in this Manual

Typewriter Font m Java language source code and examples of file contents.

m JClass HiGrid and Java classes, objects, methods, properties,
constants, and events.

m HTML documents, tags, and attributes.

m Commands that you enter on the screen.

Ttalic Text m Pathnames, filenames, URLs, programs, and method
parameters.

m New terms as they are introduced, and to emphasize important
words.

m Figure and table titles.

m The names of other documents referenced in this manual, such
as_Java in a Nutshell.

Bold m Keyboard key names and menu references.

Overview of the Manual

For general instructions on installing JClass products, including JClass HiGrid, please
see the JClass Desktop Views Installation Guide. It provides help with common
configuration problems, including setting your CLASSPATH, establishing a database
connection for running JClass HiGrid’s examples, and IDE setup.

Part I — Using JClass HiGrid — describes how to use the JClass HiGrid programming
components.

Chapter 1, JClass HiGrid Overview, presents an overview of JClass HiGrid’s general
structure and use.

Chapter 2, Properties of JClass HiGrid, provides additional information on using
JClass HiGrid.

Chapter 3, JClass HiGrid Beans, discusses JClass HiGrid’s Bean properties and shows
how to use the custom property editor.

Chapter 4, Displaying and Editing Cells, discusses cell renderers and editors and
presents an indication of how to write your own renderers and editors.

Chapter 5, JClass DataSource Overview, introduces the data access mechanism for

JClass HiGrid.

Chapter 6, The Data Model, describes how a connection to a database is established.

4

Preface

../getstarted/index.html

Chapter 7, JClass DataSource Beans, discusses JClass DataSource’s Bean properties
and shows how to use the custom property editor.

Chapter 8, DataSource’s Data Bound Components, presents the suite of data bound
components that accompany the product.

Chapter 9, Sample Programs, illustrates some selected techniques that are useful in
programming the grid.

Part IT — Reference Appendices — contains detailed technical reference information.

Appendix A, Bean Properties Reference, contains tables listing the property names,
return types, and default values for JClass HiGrid’s JavaBeans.

Appendix B, Distributing Applets and Applications, illustrates how to use
JClass JarMaster to help you combine only those JClass JARs that you really need for
deploying your application.

Appendix C, Colors and Fonts, lists the common color names and their values. You
may find this list useful when you are deciding which colors to use for various
elements in your grid.

API Reference

The API reference documentation (Javadoc) is installed automatically when you install
JClass HiGrid and is found in the JCLASS_HOME/docs/api/ directory.

Licensing

In order to use JClass HiGrid, you need a valid license. Complete details about licensing
are outlined in the JClass DesktopViews Installation Guide, which is automatically installed
when you install JClass HiGrid.

Related Documents

The following is a sample of useful references to Java and JavaBeans programming:

“Java Platform Documentation” at http://java.sun.com/docs/index.html and the “Java
Tutorial’ at http://www.java.sun.com/docs/books/tutorial/index.html from Sun
Microsystems

For an introduction to creating enhanced user interfaces, see “Creating a GUI with
JFC/Swing” at http://java.sun.com/docs/books/tutorial/uiswing/index.html

Java in a Nutshell, 2nd Edition from O’Reilly & Associates Inc. See the O’Reilly Java
Resource Center at Attp://java.oreilly.com.

Preface 5

http://java.sun.com/docs/index.html
http://java.sun.com/docs/programmer.html
../api/index.html
../getstarted/index.html
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/uiswing/index.html
http://java.oreilly.com

m Resources for using Java Beans are at Attp.//www.java.sun.com/beans/resources.html

These documents are not required to develop applications using JClass HiGrid, but they
can provide useful background information on various aspects of the Java programming

language.

About Quest

Quest Software, Inc. (NASDAQ: QSFT) is a leading provider of application management
solutions. Quest provides customers with Application Confidence®™ by delivering
reliable software products to develop, deploy, manage and maintain enterprise
applications without expensive downtime or business interruption. Targeting high
availability, monitoring, database management and Microsoft infrastructure
management, Quest products increase the performance and uptime of business-critical
applications and enable IT professionals to achieve more with fewer resources.
Headquartered in Irvine, Calif., Quest Software has offices around the globe and more
than 18,000 global customers, including 75% of the Fortune 500. For more information on
Quest Software, visit www.quest.com.

Contacting Quest Software

E-mail sales@quest.com
Quest Software, Inc.
World Headquarters
Address 8001 Irvine Center Drive
Irvine, CA 92618
USA
Web site www.quest.com
Phone 949.754.8000 (United States and Canada)

Please refer to our Web site for regional and international office information.

Customer Support

Quest Software’s world-class support team is dedicated to ensuring successful product
installation and use for all Quest Software solutions.

SupportLink www.quest.com/support

E-mail support@quest.com

6

Preface

http://www.quest.com
mailto:sales@quest.com
http://www.quest.com
http://www.quest.com/support
http://java.sun.com/beans/resources.html
mailto:support@quest.com

You can use SupportLink to do the following:
m Create, update, or view support requests

m Search the knowledge base, a searchable collection of information including program
samples and problem/resolution documents

m Access FAQs

m Download patches

m Access product documentation, API reference, and demos and examples

Please note that many of the initial questions you may have will concern basic installation
or configuration issues. Consult this product’s readme file and the JClass Desktop Views

Installation Guide (available in HTML and PDF formats) for help with these types of
problems.

To Contact JClass Support
Any request for support must include your JClass product serial number. Supplying the
following information will help us serve you better:

Your name, email address, telephone number, company name, and country
The product name, version and serial number

The JDK (and IDE, if applicable) that you are using

The type and version of the operating system you are using

Your development environment and its version

A full description of the problem, including any error messages and the steps required
to duplicate it

JClass Direct Technical Support

JClass Support Email support@quest.com
Telephone 949-754-8000

Fax 949-754-8999

European Customers Telephone: +31 (0)20 510-6700
Contact Information Fax: +31 (0)20 470-0326

Product Feedback and Announcements

We are interested in hearing about how you use JClass HiGrid, any problems you
encounter, or any additional features you would find helpful. The majority of
enhancements to JClass products are the result of customer requests.

Preface 7

../api/index.html
../../readme.html
../getstarted/index.html
../getstarted/index.html
mailto:support@quest.com

Please send your comments to:
Quest Software

8001 Irvine Center Drive
Irvine, CA 92618

Telephone: 949-754-8000
Fax: 949-754-8999

8

Preface

Part

Using

JClass HiGrid

1.1

JClass HiGrid Overview

Introduction w JClass HiGrid’s Major Classes and Interfaces wm Operations on Cells
The Data Model for JClass HiGrid w Internationalization

Introduction

JClass HiGrid provides your users with an intuitive structured visual representation of
information retrieved from one or more databases. While a form with data bound fields is
a one-record-at-a-time approach, JClass HiGrid lets you present your users with a
hierarchically organized grid. The visibility of sub-levels is under the user’s control, but it
can be under programmatic control as well. Your design can include many sub-levels,
resulting in an efficient concentration of information for tasks that require users to have
many levels of detail available. Since you choose the detail records to be made available
at every level, your design can be quite flexible and it can encompass many differing data
retrieval needs. Not only can your users view the information, they can update it, add and
delete rows—whatever you choose to permit.

Transaction processing is supported. If your application demands that some operations
must be treated as a logical unit of work, the data source part of JClass HiGrid can (with
your assistance, of course) execute the sequence as one atomic operation. If any one of
the internal units fails to commit, all updates are rolled back and the database is left in its
original state. Note that this is not an automatic recovery mechanism using log files, such
as would be triggered by some type of system failure.

JClass HiGrid works with JDK 1.3.1 or later. It can contain hierarchical levels of
information whose sub-tables the end-user can choose to show or hide dynamically at run
time. The HiGrid can be contained in a resizable window, so the user has control over the
size of the main level, and whether or not an individual detail level is showing.

The Relationship between JClass HiGrid and JClass DataSource

We'll take the simplest possible master-detail scenario to illustrate the way that the two
products cooperate to present information extracted from a data source. We assume the
existence of a database that contains a table called Orders. It contains the most frequently
needed information about all the outstanding orders placed by every customer. Another
table, called OrderDetails, contains additional information about these orders.

11

The entity-relationship diagram for this situation is shown below.

Orders

OrdersDetails

Figure 1 Entity-relationship diagram for a simple master-detail relationship.

In a master-detail scenario, one or more records of detailed information are displayed for
each master record. In our example, the master records comes from the Orders table,
while the detail records comes from the OrderDetails table. The database designer has
already determined what type of information each of the tables contains, so you simply
extract the pieces that you need in your application.

Meta Data

At this stage, you are working with the database’s meta data. The meta data contains
descriptive information about the tables, including the names of the data fields within
each table and the SQL data types of each field. Each node in the entity-relationship
diagram stores the MetaData of a given table in a simple tree-like structure called the
MetaDataTree. The diagram shows that an OrderDetails sub-table will be created for each
row of the Orders table, in order to show more detailed information about the specified
order.

SQL Query

The exact contents of both the Ordersand OrderDetails tables as displayed are determined
by the SQL query used to retrieve the rows. A simple SQL query names the data fields of
interest for a given table. A more complex SQL query adds a “WHERE” clause to restrict
the number of records returned by the database. The SQL statement needed to construct
an OrderDetails sub-table requires a WHERE clause that is able to select only the subset of
records from the OrderDetails table within the database that is related to the master Orders
record. This selection process is called a database “join.” The join is usually accomplished
by matching common fields within each table to each other. In this example, a field called
OrderID will be used to construct an OrderDetails sub-table by selecting rows from the
database’s OrderDetails table where its OrderID field is the same as the OrderID field in the
master Orders record.

At startup, the grid by default displays a single table called the root DataTable. The root
DataTable is created by executing the SQL query associated with the MetaData node at
the root of the MetaDataTree. In our example, the root DataTable will display the
contents of the Orders table as the master records. Detail records, in the form of
OrderDetails DataTables are exposed at run time by clicking on an expander icon, also
called a folder icon, used for that purpose. As the user clicks on more expander icons, more
DataTables are created. Thus, at run time, another tree-like structure called the
DataTableTree is constructed, and it is composed of DataTables.

12

Part | m Using JClass HiGrid

While there is a 1:1 relationship between Orders and OrderDetails in the meta data
diagram, there is a 1:N relationship between the Orders DataTable and the OrderDetails
DataTables associated with each row of the parent Orders. This occurs because any single
order may consist of a number of items, each being described by an OrderDetails record.
Both the grid and its underlying data source must be able to deal with structures of this
type, and the more general type where the master-detail relationship forms an N-way
tree.

Result Sets

Once the structure has been defined, and the SQL query has been formulated, the
database can return data, called result sets, for the root-level table and for every one of the
sub-tables. The queries that return sub-table result sets are performed as needed, when
the grid needs to display them. It is the DataTable’s job to store the result sets for later
retrieval.

Visual Aspects of the Grid

Now that you can retrieve data in a hierarchical fashion, you may wish to control the
visual aspects of the fields within the grid. For instance, you may want to adjust the size,
color, or other visual property of the data fields. The following list illustrates those items
that present information about the state of the grid and those that are under a user’s
control.

Chapter 1 m JClass HiGrid Overview 13

These are:

Clip Indicators

These small icons are present when the size of a cell is too small to
display all of the text in it.

Column Moving

The initial position of a column is the same as the order in which
they are mentioned in the database SELECT statement. End users
can rearrange the order to suit themselves by dragging a column

to a new position on the row.

Column Resizing

Columns may be resized by dragging on the right-hand border.
The resizing operation affects all columns of the same type.

If you place a grid in an Applet, or flush in a frame, the right-hand
column lies very close to the frame’s border. This might make it
difficult for end-users to position the mouse pointer on the
column’s resizing border. The setExtrallidth() method in HiGrid
lets you set more space between the rightmost column’s border
and the frame’s border.

Dynamic Headers

The header row disappears off the top of the viewing area when
an end-user scrolls down a large table. A method in HiGrid, called
setHeaderTipVisible(), lets you control the visibility of a special
“tool tip” that exactly replicates the header row and places it in the
row above the mouse pointer.

Edit Status
Column

The Edit Status Column presents a visual indication that marks the
current row, and a pencil icon marks rows that end users have
changed by editing one or more cells.

You can control whether the edit status column appears. See the API
documentation for EditStatusCellFormat.setShowing().

EditStatus is now a potentially replaceable public class. So is
NodeRenderer, the class that draws the cell. To replace it, you need
to extend JCImageCel1Renderer and implement
HiGridNodeRenderer. See Displaying and Editing Cells, in
Chapter 4 for more details on JClass HiGrid’s cell renderers.

Folder Icons

These icons present visual clues about the hierarchy of the data.

Indenting Levels are indented by a fixed amount, if at all. Indentation is

Subtables turned on or off using the setLevelIndent() method in HiGrid.

Popup Menu A configurable popup menu gives end users access to frequently
used commands. Popup commands are exposed, allowing you to
invoke menu commands from your code.

Row-based copy | Row-based copy and paste operations are available.

and paste

14 Part | m Using JClass HiGrid

Row Resizing Rows are resized by dragging on the horizontal boundaries of any
Edit Status cell. The resizing operation affects all the rows in the
corresponding table, not just the one that was dragged.

Sort Indicators These indicators appear when an end user clicks on a column
header. Since bidirectional sorting is implemented, the icon shows
whether the sort is in ascending or descending order.

J] orier |CuslomerID|Em[:IU\,r3elD CrderDizte IPUrChBSEUrUEH‘ILmUE' IRECIJ"’EU:JHIE I
103 o |1 1292-0819... |792 1932-19-20 00
T ustornerlD | Toampanyhlame Conzastslame | Bilingﬂdjress-l E
2= | [212 vinzers |Frank o [a1 ..
—[Terr torel D |_E|'|it0|'.rNéme | Ghp Indlcatars:
MTT | Rocky Mourta r .

ms Indicator Iil F:a'r-!Rn‘hl au:nml .Jni'F'rir.nl Tay3atm |Tnta|l nq.qu;l Raln.c:Thl lir

]as.n |1 g |1|1
L

o

: i
huwng a Golumn
i ti

Urjerjatallll)l OrdBrIDl PIOAUCT
=S T [103 |amrod

| Pr:uducﬂl:-l ProductDescriptio

lder Izar _Juawon |
]

scendlng [Resizing a Golumn

= o

-

EmployeelD

A93A-18-NF N0

1936-13-07 00....

|Sort Descending

: 4 1 gﬂl 1932-20-22 0.

| - T Mozsar2zon..
T i 5 CF TSI T T 14011 UL
110 "Papup Menu 1934-18-19 0.
111 1636 17 17 00,
117 936108 A
13 1934-17-07 00...
114 1936-33-16 00
115 10341 0-22 00
116 1936-J4-2¢ 00
17 193510-11 00
118 10333006 00
118 1932-26-12 00
120 1935-10-19 00...
121 1632 3 06 00
|

Figure 2 Active elements on HiGrid'’s graphical user interface.

Chapter 1 m JClass HiGrid Overview 15

Information about how a given DataTable is to be rendered is stored within a
FormatNode. For each field in a MetaData node, there exists a corresponding field within a
FormatNode that describes all visual aspects of that data field. FormatNodes are created at
design-time and are stored within a FormatTree. There is one FormatNode stored in the
FormatTree for each MetaData node, so the FormatTree bearsa 1:1 relationship to the
MetaDataTree on a node-by-node basis.

A RowTree is created to visually depict the contents of the DataTableTree at run-time. It is
able to selectively display the contents of the entire DataTableTree. However, the
RowTree is a logical superset of the DataTableTree because it contains rows that are not
retrieved from the data source. These are the header, footer, before details, and after
details rows which provide places for such things as column headings and summary
information. The RowTree contains only the essential amount of information needed to
reference the data in the DataTableTree and the formatting information in the
FormatTree. It uses this information to manage the display of the grid.

Cells

The rows of the RowTree are comprised of cells. This is the basic unit of information in the
grid. The source of a cell’s value is a database field. Thus, within the context of this
manual, the words field, cell, and column are used almost interchangeablyl.

JClass DataSource maintains the values for all these cells within DataTables — the grid
does not maintain separate copies. Thus, for any row, the DataTableTree contains the
actual data while the formatting information is drawn from the corresponding node in the
FormatTree.

Besides specifying simple visual information such as color and font, each FormatNode also
defines objects to display and edit a given cell. Each cell is drawn by an object called a
Cell Renderer and edited by an object called a Cell Editor. This allows tremendous
flexibility in terms of displaying and modifying data, since the modification of a cell’s
value is not tied to its display. For ease of use, a Cell Renderer and Cell Editor are
automatically chosen for each field based on the cell’s data type (although these choices
can be overridden).

1.1.2 JClass HiGrid and the Model-View-Controller Paradigm
The design of JClass HiGrid conforms to the Model View Controller MV C) paradigm, a
technique for managing graphical user interfaces. MVC is a popular object oriented
pattern that separates the application object (Model) from the way it is represented to the
user (View), and from the way in which the user controls it (Controller). In the case of the
JClass data binding products, the separation between the model and the view is achieved
by providing two distinct packages. The data model is contained in JClass DataSource
(the jclass.datasource package), and functions as the Model, and JClass HiGrid (the
com.klg.jclass.higrid package) comprises the View and the Controller. Further

1. Fieldis used to emphasize the origin of the data (in a database field), cel/is used when the emphasis is on the display, and
column is used when referring to the group of cells in a DataTab1e that have the same field name.

16 Part | m Using JClass HiGrid

1.1.3

separation of function is achieved by having a separate Controller class within
JClass HiGrid to manage user interactions.

The Controller class is subclassable and replaceable.

The Model part of MV C keeps all the information about the organization and the state of
the data. It also implements all the operations that can be used to manipulate the data. It
has no responsibility for displaying the data, nor for the GUT actions that are used to
manipulate the data. The Model’s methods know how to access and modify data; the
View methods manage the display of that data. The View object communicates with the
Model. It uses the query methods of the Model to obtain data from the underlying
database and then displays the information.

Because the View is separate from the Model, multiple views, even different kinds of
views, can all draw their data from the same model. This makes it possible to have a form
containing JClass Field components, a JClass LiveTable, and a JClass Chart all presenting
data from a connection managed by JClass DataSource. Selecting a different cell in any
one of the views and modifying its contents there causes all the corresponding cells in the
other views to update themselves, thereby maintaining a consistent view of the data
everywhere.

In the MVC paradigm, the Model is the object that manipulates the data. The View code
relies on a public interface to the data. It does not need to know anything about
implementation details. When the data model changes due to an update, it fires an event
that is passed on to the View so that the information on the screen can be updated. The
View has no memory, except for the layout structure. It refers to the data source
whenever it needs to redisplay the data in cells.

The Controller object receives mouse events and keyboard inputs and translates them
into commands for the model or the view. For example, a mouse click on a cell selects it
and launches its editor, or a mouse click on the folder (expander) icon exposes dependent
rows in a hierarchical grid. In some situations the Controller may interact directly with
the View without needing to communicate with the Model. For example, the view may
consist of a group of rows. Upon receiving a mouse-click on an editable cell in one of
these rows, the Controller can request that the View should indicate that the selected cell
is being edited, and launch the appropriate editor. The exchange of a cell renderer for a
cell editor does not require that the data be updated in the Model. After a successful edit,
the Model is informed to update the data source.

HiGrid’s View and its Controller work together, but the Controller is also responsible for
communicating data access operations back to the data source.

Types of Data Sources Supported

The grid may be bound to any of the common sources of data. Naturally, a JDBC data
source is supported, as is any source that can be accessed through a JDBC-ODBC bridge.
Unbound data can be presented as well, although you are responsible for adding the
necessary code. In-memory data arrays or vectors, where the data has been generated as

Chapter 1 m JClass HiGrid Overview 17

1.2

the program runs, may be used as the data source. The example called VectorData.java
sketches one approach that can be taken.

JClass HiGrid’s Major Classes and Interfaces

The diagrams in this and the following two sections show a simplified inheritance
hierarchy for the three major groups in the HiGrid family. The inheritance chain is not
followed back to the ultimate ancestor; instead, the hierarchy within the packages is
shown.

Among the many classes in the JClass HiGrid package, the main one is the HiGrid object
itself. It delegates to another class, normally the DefaultDataModelListener class, in the
JClass DataSource package, which is for objects that are interested in receiving
DataModelEvents. The DataModelEvent, through the parameter it passes, describes
changes to the data source. Interested listeners can then query this data source to reflect
the changes in their display. HiGrid implements three other interfaces,
ComponentListener, and JCValidateListener. The first two are recognizable as standard

18

Part | m Using JClass HiGrid

java.awt.event and java.awt interfaces respectively, and JCValidatelistener, part of
the com.kl1g.jclass.cell package, is for receiving value change events from a cell editor.

JClass HiGrid - Structure of the
Major Classes and Interfaces

1
I_ - Hitrid | Citiclires
1

|
Call=ormat | GridSzrollksr
|
|
|
|

1 1
| datazourcz: DataSourceTrzeMods | - — —| Baseloyreyste | | HiGridEy=r |

T
|
|
|
| FuwTie: | FormialTree | |Agg|u§uchvcluga,ulL | HiGridvalddeBEvenl ebs |

extends

KEY | CLASS /ABST?#CT CoATE)]

implemonts

Figure 3 Major classes and interfaces for HiGrid.

GridArea passes mouse and keyboard events to the Controller class where they are
handled. This class also positions the cell editors.

Class Cel1Format implements the JCCe11Info interface, which lists the methods that must
be defined to return information about the cell. Ce11Format renders a given cell by
implementing these methods. RowFormat sets the height of the row, its indent and grid
style, and sets up the formats for the row.

GridScrollbar manages the interaction with the actual scrollbar. The position of the
vertical scrollbar can be on either side of the grid, and the position of the horizontal

Chapter 1 m JClass HiGrid Overview 19

1.2.1

scrollbar can be at the top or the bottom of the grid. See HiGrid’s API for
setHorizontalScrollbarConstraints() and setVerticalScrollbarConstraints().

RowTree is based on Tree, which implements TreeModel, a generic interface for a Tree
hierarchy. This tree interface is used for organizing the meta data and the actual data for

the HiGrid.

For more information on the JClass HiGrid API, see the entries under
com.klg.jclass.higrid in the Javadoc API for this product.

A Closer Look at JClass HiGrid

JClass HiGrid consists of one single GUI Component, with sub-tables rendered as
necessary. The grid is bound to a database, although this is not strictly necessary, because
the grid can be used in unbound mode. Either way, the grid is bound to some source of
data. The grid is able to present any hierarchically organized (tree-like) data design.
Normally, there will be a parent table (or joined parent tables) and one or more
subsidiary tables. These subsidiary tables can themselves contain subsidiary tables, and so
on. You can code your design or you can use JClass HiGrid’s complete design-time
customizer. See the discussion in JClass HiGrid Beans, in Chapter 3, for details on how to
create a hierarchical data design using this design aid, the HiGridBeanCustomizer.

G e e obw Fmsosws
O O O 71 %
L I

Buibie: Fro @.{(ux, CGreurge || 4336 Nt:wluuSIwr"Ulim || v

- Edit Status Column |
__--

IDoD |SH EDwI230 199" [423

SH-R.DMQSE Shirsano BDMVPZ0ZTE. Ehimm: RDMASC | CWIFNT

. SH STMO50 | 1997 042504 2 12,0000 0.5
Fnlder Icong \

o] 'E! CIMITIILR 199704350 3 1250000 0.15
]—Ii| 1023 L= B3 19370425 :

Figure 4 The general appearance of a grid, showing folder icon and edit status columns. A row tip appears
while there is a mouse-down event on the scrollbar thumb.

b

The grid itself is the visual component for displaying the data model. It is expandable and
collapsible through user interaction. The user can choose to expose dependent rows, and,
if these rows also contain dependent rows, they too can be exposed. Changes to cells are
effected by clicking on a cell to activate its editor. The changes are committed according
to three selectable commit policies, ranging from manual to two types of deferred
commit. Transaction processing is supported as a special case of the commit policy.

20

Part | m Using JClass HiGrid

1.2.2

1.2.3

The appearance of a level in the structure can be individually specified. The Customizer
can be employed to specify the appearance of a level.

One scrollbar controls the view of the top-level data. One way that end-users locate a row
is by scrolling. They click on the scrollbar thumb and a “row tip” appears. The row tip’s
label is customizable, but by default it displays the contents of the first data column for the
row that it is on. Note that there are two columns to the left of the first data column. The
first is where the Folder Icons reside and the column to its right, containing initially blank
squares, is the Edit Status column. The Folder Icons column shows the grid hierarchy in
outline form, while the Edit Status column uses icons to indicate the various ways that a
row may have been edited. The various icons are shown in the grid symbols table under
Grid Symbols. Scrollbars are not available for sub-tables.

The grid area of the HiGrid is always double buffered. The result is faster updates and
flicker-free operation.

Resizing the Grid

Since JClass HiGrid is subclassed from java.awt.Component, the grid’s overall
proportions are resized like any other window.

Users may resize any column horizontally by placing the mouse pointer at its right hand
boundary where it becomes a double-ended arrow, then dragging to the new size.
Resizing a column or row affects all columns/rows for that level of the table. Individual
cells are selected by clicking on them, or by traversing to them using the arrow keys
(unless the cell is in edit mode, in which case the right and left arrow keys position the I-
beam in the field). Resize vertically by placing the mouse pointer at the bottom of one of
the Edit Status column cells, then holding the left mouse button down and dragging to the
new height. You can resize the width of a column no matter what row you are currently
on. Drag the cell’s left border to resize all cells in that column. By default, vertical resizing
is invoked only on cells in the Edit Status Column, but there is a property that allows you
to set vertical resizing on any cell if you wish. Once selected, a cell’s contents may be
modified, assuming that the proper update policy is in effect. Since cells may contain
different data types, different cell editors will be invoked to effect the edits.

Jump scrolling is used in the vertical direction. A row is either visible or it is not; there are
no half measures except for the last row, and only if the height of the view rectangle is
incommensurable with an integral number of rows. On the other hand, horizontal
scrolling by dragging the scrollbar is on a pixel-by-pixel basis, resulting in smoother
scrolling in that direction. (Clicking on the scrollbar arrows results in jump scrolling by a
few pixels at a time.)

The Actionlnitiator Interface

JClass HiGrid uses the ActionInitiator interface as a way of interpreting user input.
There is a default mapping between user actions (keystrokes and mouse clicks) and
JClass HiGrid responses. Since not all user input is meaningful to JClass HiGrid, some

Chapter 1 m JClass HiGrid Overview 21

1.3

user input is ignored, while other input is associated with a specific command, such as
navigating to some specific cell. This section gives an overview of the mechanism used to
manage the mapping, starting with the ActionInitiator interface, whose job is to
determine whether a match has been found between the AWTEvent resulting from a
keystroke or mouse click and a defined mapping currently in effect for the grid.

Classes Related to the Actioninitiator Interface

| AWTEvent | | KeyEvent | | MouseEvent |m

|
3 = T
Jjelass. higrid | N
|
1
_____________ |
| |
1 1
| Keyactioninitistor | | HiGridAction | | Mousedctioninitistor
Controller
i
KEY | CLASS | /AEISTRACT CLASS / extends
INTERFACE — ——— implements

Figure 5 Classes and Interfaces relating to navigation through the grid.

The two classes that implement ActionInitiator are KeyActionInitiator and
MouseActionInitiator. The two classes allow for distinguishing between keyboard
actions and mouse actions. They have their own implementations of isMatch(), which
determines whether a user input corresponds to one of the actions meaningful to the grid.
Action handling code is contained in the Controller, which defines a list of default
mappings using the constants found in HiGridAction that the grid uses to allow
navigation through the grid. By default, keystrokes are interpreted as navigation
commands, whereas a left-clicking on a cell launches the cell’s editor, or right-clicking on
a cell whose editor is inactive invokes a popup menu that contains database commands as
well as navigation and print commands.

The various actions possible in JClass HiGrid are discussed in the following sections.

Operations on Cells

Once a cell is highlighted by left-clicking, an editor appropriate for the cell’s data type is
displayed. In this manual, it is referred to as the current cell.

There are the usual cell editors for String and numeric types, and a number of custom
editors are employed as well, such as calendar popups for editing dates, and editors that
perform data validation functions.

22

Part | m Using JClass HiGrid

1.3.1

1.3.2

If you are a user of JClass LiveTable, it is useful for you to know that the cell editors for
JClass HiGrid work in the same manner. They are single instance embeddable
components.

Because only one editor at a time is allowed, there is no problem in basing the cell
renderer on the data type. There are cell renderers for each different column in a table.
Also, programmers can write their own cell renderers if they need to accommodate novel
data types. See Displaying and Editing Cells, in Chapter 4, for details.

In a Microsoft Windows environment, the end-user modifies the cell’s data with the help
of an edit popup menu which is accessed by right-clicking on any cell while it is in edit
mode.

The EditPopupMenu class defines a large number of enums for the possible items that can
be chosen to appear in the edit popup menu. You can choose to place any of these in a
customized version of the edit popup menu. A new set of popup menu items presents
frames that contain instructions on using the mouse and keyboard shortcuts in

JClass HiGrid.

Undao

Cut
Copy
Baste
Delete

Select Al

Figure 6 The Edit Popup menu in Windows.

All the standard editing operations are available on the popup.

Cursor Tracking

A new method, called setTrackCursor, allows you to set a Boolean flag that controls
whether you wish to be informed about the position of the cursor. You can then change
the default cursor under program control.

Cell Traversal Via the Popup Menu

JClass HiGrid has its own popup menu, quite distinct from the edit popup menu in
Windows. Right-clicking on any cell except the one with an active editor activates this
HiGrid-specific object. The Popup Menu commands for moving from one cell to another
are described in this section and shown in Figure 18, Section 2.5.6. Some of the Popup
Menu items contain sub-choices, in which case they are shown in brackets following the
main item.

m Move To Grid Record (First, Previous, Next, Last)

Choosing First causes the first cell of the first row to be highlighted. Choosing Previous
causes the first cell of the previous row to be highlighted. The action depends on

Chapter 1 m JClass HiGrid Overview 23

which sub-tables are open because the previous visible row will be chosen no matter
what its level is. The same policy applies to Move 10 Next. Choosing Last causes the
first cell on the last open row to be highlighted no matter what its level is. Thus, these
operations potentially move the highlighted cell between levels in the master-detail
hierarchy.

m Move To Table Record (First, Previous, Next, Lasi)
This group maintains the selection within the same level (the same data table), but in
all other respects functions similarly to Move 1o Grid Record.

m Move To Parent
Focus moves to the leftmost cell in the parent row from the one on which the
command was issued.

m Collapse Parent

Collapse the table containing the highlighted cell. Other sub-tables at the same level
as this one but belonging to different parents are not affected.

Edit Operation

m A highlighted cell may be edited unless you have flagged the column as read-only.
When the cell has focus it is in edit mode, and right-clicking on the cell in a Windows
environment produces a different popup with the usual edit options: Undo, Cut, Copy,
Paste, Delete, and Select All.

Operations on Rows
The defined operations for rows are (bracketed items are the sub-choices):

m Insert (A list of names of tables—the names that are available in the current data
source)

Inserts a new row in the chosen table.

m Delete (Current or Selected)
Marks the current or selected rows for deletion. When the rows are actually deleted
depends on the commit policy.

m Cancel (Current, Selected, or All)

Cancels the edits on the current row, on all selected rows, or all edits that have been
done after the last commit.

m Update (Current, Selected, or All)
Updates the edits on the current row, on all selected rows, or all edits that have been

done after the last commit.
m Requery (Record, Record and Details, Selected, Selected and Details, or All)

24

Part | m Using JClass HiGrid

Requeries the database. A requery can be done on an individual record, a record and
its dependent tables, selected records with or without their dependent tables, or the
whole database can be requeried. All modifications to the grid since the last commit
will be lost.

m Select (Current, All In Same Level, All In Same Table, Al))

Causes the referenced cells to be selected.

m Row height sizing operation

All rows of the same type must have the same height. Point the mouse at the lower
border of the rectangle at the left of the first cell on any row (the Edit Status column).
The mouse pointer turns into a double-tipped arrow. Click and drag to resize the
height of all related rows to whatever height you selected for the row you are on.

1.3.3 Operations on Columns

m Resizing columns horizontally

Resize the width of a column by placing the mouse pointer on the right hand border
of the column header. The mouse pointer turns into a double-tipped arrow. Click and
drag to resize the width. All the cells in the chosen column will be resized, even those
that are underneath and separated by sub-table rows.

m Resizing columns vertically

A column’s height may not be resized individually. Only the row height is adjustable,
as described in the previous section.

m Sorting a column

Left-clicking on a column header at any level causes the rows at this level to be sorted
in ascending order if the data type for the column is numeric, date, or String. A
subsequent left-click reverses the sort order. A sorting indicator is displayed in the
header column indicating whether the sort is ascending or descending.

m Truncated fields

If the size of the cell is too small horizontally to display all the data, a small arrow icon
appears on its right hand side if the text in the cell is right-justified, indicating that the
cell should be resized to make its complete contents visible. Similarly, if the cell’s
height is too small the arrows appear at the top and bottom of the cell. The position of
the arrows depends on which text justification policy (right, center, left) is in effect.

1.3.4 Displaying Images in Cells

Because all standard data types, including byte arrays, are supported, it is possible to
display images in cells. In addition, it is possible to display a scaled image in a cell. See
Displaying and Editing Cells, in Chapter 4, for details.

Chapter 1 m JClass HiGrid Overview 25

1.3.5

1.3.6

1.3.7

Cell Borders

All cells have a border around them. You can choose custom borders for cells, with
variable styles and widths. There are ten different border styles to choose from, including
a “no border” option.

JClass HiGrid’s Cel1Format class contains the methods that let you choose among the
various styles of cell borders.

Keyhoard Shortcuts for Grid Navigation

The HiGridAction class lets you define a mapping from a user event to an action
performed on JClass HiGrid. For example, HiGridAction can be used to map Control +
Left Click to a selection event.

These keystrokes control cell traversal:

m Alt+Page Up, Alt+Page Down — Scroll horizontally (Alt+Page Up = left) if the
width of the grid is larger than the width of its window.

m Citrl+Home, Ctrl+End — Move to the first or last cell in the table. If the last row of
the main table has been expanded to show sub-tables, move to the last cell of the last
visible sub-table.

m Ctrl+Number Pad Plus(+), Ctrl+Number Pad Minus (-) — Expand the current
row to make the detail levels visible, or hide the detail levels by collapsing them.

m Enter — If pressed after an edit, the current row is marked as changed if the cell’s
value did indeed change.

m Esc (Escape key) — Cancel the current edit and return to the value the cell had before
editing began, that is, return to the last updated value.

Home, End — Move to the beginning or end of a row.

Page Up, Page Down — Move to the corresponding cell on the previous or next
page. A page is defined as the number of rows that are visible in a window, and thus it
is dependent on the window height. If some rows have been expanded to show sub-
tables, the Page Up and Page Down commands will show the rows of these sub-tables
and ensure that none are bypassed.

m Tab, Shift+Tab — Move forward or backward one cell. Wraps from one row to the
next.

Mouse Actions
HiGrid supports most of the standard mouse actions. The following list describes mouse
actions in the Windows environment.

m Left-Click on a cell — Selects that cell for editing. If the cell contains a graphic, show
its full size.

26

Part | m Using JClass HiGrid

Left-Click on an expander button (if there is one, it is the small square containing a +
sign at the extreme left of a row) — Expands the table by making sub-tables associated
with that row visible. If the sub-rows are visible, the button contains a - sign. Clicking
on it collapses the table by hiding the sub-rows.

Right-Click on a selected cell (Windows only) — When the button is released, shows
a popup menu containing the editing choices Undo, Cut, Copy, Paste, Delete, and
Select All

Right-Click anywhere else — Shows a popup menu containing the following choices.
(The bracketed items are the sub-choices for each choice.)

m Insert (List of Table Names) — Inserts a new row at the level specified by the table
name.

m Delete (Current or Selected) — Deletes the current or selected rowf(s).

m Cancel (Current, Selected, All) — Cancels uncommitted changes to the specified row
OT TOWS.

m Requery (Record, Record and Details, Selected, Selected and Details, All) — Refreshes the
grid’s values by requerying the database.

Update (Current, Selected, All) — Commits changes (deletes/inserts/updates).
Select (Current, All In Same Level, All In Same Table, All) — Selects rows in the grid.
Print (4s Displayed..., As Expanded...) — Prints the exposed levels or all the levels.

Print Preview (4s Displayed..., As Expanded...) — Invokes the printer driver window.
After selecting a printer, show a print preview on the screen rather than actually
printing.

m Move To Grid Record (First, Previous, Next, Last) — If First (or Lasi) is chosen, focus
is transferred to the leftmost cell of the first (or last) cell in the grid. A row in a
collapsed table cannot be a target of a Last operation; instead, the last row of the
last open table is the target. If Previous (or Nexi) is selected, the motion will, if
possible, preserve the column that initially holds the current cell.

m Move To Table Record (First, Previous, Next, Last) — Similar to the above, except
that motion is restricted to the table that initially holds the current cell.

m Move To Parent — Moves to the leftmost cell of the parent row for the table
containing what was initially the current cell.

m Collapse Parent — Hides the level containing the current cell. The new current
cell is the leftmost one of the parent row.

Ctrl+Left-Click — Selects the row. Multiple rows may be selected by repeating the
operation on rows that need not be adjacent.

Shift+Left-Click — After choosing Select, Current from the popup menu or
selecting a row with Ctrl+Left-Click, this action selects all intervening rows between
and including the first chosen and the one on which the shift-click occurred. The
action can be used to select a parent and all its children, so long as these tables have
been expanded.

Chapter 1 m JClass HiGrid Overview 27

1.3.8 Grid Symhols

Graphic Meaning
Current Row Icon Icon Column:

|I| This is the selected row.
Row Edited Icon Icon Column:

This row has been edited.

Marked for Deletion Icon Column:

This row has been marked for deletion.
Icon
Expand Icon Folder Column:
The expander button indicates that there

+ are sub-tables associated with this row.
Note: Other icons are available. See
Section 1.3.16, Folder Icon Styles.

Collapse Icon Folder Column:
E The appearance of the expander button
when the row has actually been expanded
Truncated String Icon | Anywhere on a cell’s edge:

} This icon appears near the border of a cell
when its size is too small to hold all the
data.

Sort Icons Header Column:

2 One of these icons appears after a left-click

V| to indicate that the column has been
sorted.

1.3.9 Bookmarks

The data source needs a mechanism for keeping track of all open rows. This is
accomplished by assigning a row identifier, called a bookmark, to every row. Using this
scheme, each cell is uniquely identified by its bookmark and by a column identifier which
names the column within that row. The assignment of a bookmark to a row is dynamic
because rows themselves are dynamic. A row’s bookmark may change as a result of
requery operations. In fact, selecting the Requery, All option from the popup menu
replaces all bookmarks with new ones. Other requery operations cause the replacement
of the bookmarks of the affected rows.

28 Part | m Using JClass HiGrid

1.3.10

1.3.11

1.3.12

1.3.13

1.3.14

A Note on Public Methods in HiGrid

There are a number of public methods in HiGrid that are not intended for use by the
application programmer. They must be public so that they can be used by Bean editors
and the like. As a general rule of thumb, consult the API documentation.

Editing Cells

Once a cell is highlighted, an editor appropriate for the cell’s data type is instantiated.
There are the usual cell editors for String and numeric types, and you can employ a
number of custom editors, such as calendar popups for editing dates and editors that
perform data validation functions.

Changing the Grid’s Appearance

You can customize the grid’s appearance by changing fonts, border styles, and colors. You
can select from a set of predefined folder icons — the symbols that indicate whether a level
is expanded — or you can design your own, and you can change the color and thickness of
the connecting lines. These changes can be made programmatically, or they can be done
in an IDE using the HiGridBeanCustomizer, which includes functionality for setting these
properties one level at a time.

Adding Headers and Footers

Another way of customizing your grid’s appearance is by adding header, footer, and
detail rows. These rows can contain items that are not drawn directly from the data
source yet are related to it, such as text fields that introduce summary columns, and
computed results that the database itself does not supply.

Displaying More of the Grid

Imagine an idealized monitor so large that it is capable of accommodating a window of
any size. It is useful to define the “visible” grid as that which would be seen in a virtual
monitor’s window spacious enough to hold all of its open tables. Any real monitor’s
window containing a grid can be thought of as one through which you can view a portion
of the virtual screen that holds the entire grid. The concept of a visible grid is essential for
understanding how the aggregate classes work. This topic is discussed in a later section.
Also, the visible grid determines how much data must be retrieved from the data source.
The grid requires all the data necessary to display the visible grid, not the collapsed
layers. Thus, if the root-level table contains ten thousand rows, the data for all those rows
must be retrieved because the root level is always visible.

The implication for displaying more of the grid is that simply resizing the view area
causes the grid to be repainted with cached data. On the other hand, exposing sub-tables
requires that a query be sent to the database, which is potentially more time-consuming.

Chapter 1 m JClass HiGrid Overview 29

1.3.15

1.3.16

The HiGrid Class

This central class in the package defines the overall look of the data grid. It sets up various
parameters and controls such things as whether pop-up menus, row selection, and sorting
are allowed. It sets colors, border sizes and styles, indents, spacing, and initializes print
parameters. It manages the look of the GUI as levels are opened and closed, and as edits
are made on cells, rows, or a group of rows. Instantiate this class to create a visible grid.
Its signature is

public class HiGrid extends JComponent
implements java.awt.event.ComponentListener,
JCValidatelistener

Because it is a subclass of javax.swing.JComponent, it inherits properties from the
Container and Component classes as well. Naturally, it responds to window resizing and
closing events. Among the methods contained in HiGrid are the following:

m Jlevellndent — a Boolean that controls whether a sub-table is left-indented.
m width, height — the width and height of the entire component.

m verticalScrollbar, horizontalScrollbar — in GridScrollbar, gets the scrollbars for
the grid.

selectedObjects — an array of references to RowNodes for the currently selected rows.
gridArea— the double buffer for the grid area.

rowSelectionMode — you may wish to prevent certain rows from being selected.
Possible values are ROW_SELECT_ANY (the default), ROW_SELECT_IN_SAME_LEVEL, and
ROW_SELECT_IN_SAME_TABLE.

m dataModel — sets the data source for the given level, which may be an instance of
HiGridData or TreeData.

allowRowSeTlection — sets whether or not row selection is allowed.

drawingConnections — indicates whether or not the connector lines that join rows of
sub-tables to their parents are to be drawn.

borderSize — sets the size of the border to be drawn around a cell.

formatTree — a format tree sets the visual characteristics for each level.

Folder Icon Styles

HiGrid has seven predefined folder icon styles. These are:
FolderIconStyle.FOLDER_ICON_STYLE_SHORTCUT
FolderIconStyle.FOLDER_ICON_STYLE_FOLDER
FolderIconStyle.FOLDER _ICON_STYLE TRIANGLE
FolderIconStyle.FOLDER_TCON_STYLE_SMALL_LINE_3D
FolderIconStyle.FOLDER _ICON_STYLE MEDIUM_LINE_3D

30

Part | m Using JClass HiGrid

1.3.17

m FolderIconStyle.FOLDER_ICON_STYLE_LARGE_LINE_3D
m folderIconStyle.FOLDER_ICON_STYLE_TURNER

The icons are shown in Figure 7.

E Shortcut

Folder

" Triangle

-— Small 3D Line

I Large 3D Line

[

4

-

s mw Medium3DLine
+

()=

[;] Turner

Figure 7 The seven pre-defined image icon choices.

You specify the folder icon style through the call:
HiGrid.setFolderIconStylelndex(style);

where style is one of the aforementioned constants. You have the option of using your
own icons. In this case, you use the setFolderIcon method:

public void setFolderIcon(Image icon, int type)

where you supply an icon and a type.

The Aggregate Classes

These classes are designed as a convenient way to calculate the information that is often
required in summary records. The main class, called AggregateAll, implements the
Aggregate interface. It contains methods common to all the different types of calculations
that the “Aggregate” specialty subclasses define. The SummaryColumn class, through its
parameters identifier (sets the column identifier), columnType (one of
COLUMN_TYPE_UNKNOWN, COLUMN_TYPE_LABEL, COLUMN_TYPE_DATASOURCE,
COLUMN_TYPE_AGGREGATE, COLUMN_TYPE_UNBOUND), and aggregateType (one of

Chapter 1 m JClass HiGrid Overview 31

AGGREGATE_TYPE_NONE, AGGREGATE_TYPE_COUNT, AGGREGATE_TYPE_SUM,
AGGREGATE_TYPE_AVERAGE, AGGREGATE_TYPE_MIN, AGGREGATE_TYPE_MAX,
AGGREGATE_TYPE_FIRST, AGGREGATE_TYPE_LAST), sets up the column object for the
summary record types. The individual Aggregate classes compute results. For instance,
AggregateAverage computes the average value of a given column.

These classes are not used directly. Instead, you set up the meta data for footer rows as a
list (Vector) of summary columns using the columnType enums (class constants). Here are
some examples:

Setup:

MetaDataModel orderDetailMetaData = null;
RowFormat orderDetailFooterFormat = null;
SummaryMetaData orderDetailFooterMetaData = null;
RowFormat orderDetailBeforeDetailsFormat = null;
SummaryMetaData orderDetailBeforeDetailsMetaData = null;

Treelterator ti = node.getlterator();
if (ti.hasMoreElements()) {
node = (FormatNode) ti.get();
node.setDefaultSortData(new SortData("prod_id",
SortGrid.DESCENDING));
orderDetailMetaData = (MetaDataModel)
node.getRecordFormat().getMetaData();
orderDetailFooterFormat = (RowFormat) node.getFooterFormat();
orderDetailFooterMetaData = (SummaryMetaData)
orderDetailFooterFormat.getMetaData();
orderDetailBeforeDetailsFormat = (RowFormat)
node.getBeforeDetailsFormat();
orderDetailBeforeDetailsMetaData = (SummaryMetaData)
orderDetailBeforeDetailsFormat.getMetaData();
}

Label:

SummaryColumn column = new SummaryColumn("Total Quantity: ");
orderDetailFooterMetaData.appendColumn(column);

Aggregate:
SummaryColumn column = new SummaryColumn(orderDetailMetaData,
"LineTotal",
SummaryColumn.COLUMN_TYPE_AGGREGATE,
SummaryColumn.AGGREGATE_TYPE_SUM);
orderDetailFooterMetaData.appendColumn(column);

Data Source:

SummaryColumn column = new SummaryColumn(orderDetailMetaData,
"ProductID",
SummaryColumn.COLUMN_TYPE_DATASOURCE) ;
orderDetailBeforeDetailsMetaData.appendColumn(column);

32 Part | m Using JClass HiGrid

1.3.18 Virtual Columns

1.4

A Virtual Column performs an analogous aggregation operation by using row data to
produce a derived value. In the case of a virtual column, mathematical operations are
defined on the cells of a row, such as applying a sales tax calculation to a cell containing
the purchase price of an item. The computed total price with the sales tax added on is
displayed in a newly defined cell. When all rows of the table are taken into account, these
cells form a column that we are calling a virtual column. The virtual column may be
computed from the values of two or more cells in the row. In turn, its value may be
aggregated by the methods described in this section to produce a footer detail.

Note: Please see Virtual Columns, in Chapter 6, for an extended discussion of the use of
virtual columns.

The Data Model for JClass HiGrid

JClass HiGrid is capable of displaying hierarchical data structures because its underlying
data model is also capable of maintaining actual data tables that imitate the structure of a
hierarchical design. The relationship that one table bears to another is called meta data to
distinguish it from the actual data that the grid displays. To be specific, we present a
design for a sales order system shown diagrammatically in Figure 8. The root data table is
extracted from a database table called Orders. Each row consists of the fields OrderID,
CustomerID, EmployeelD, OrderDate, PurchaseOrderNumber, and RequiredDate. Sales orders
are more fully described in two separate sub-tables, Customers and OrderDetails. The
Customers table is linked to its parent by matching the CustomerID fields in each. The field
OrderID in the OrderDetails table is the same as OrderID in the Orders table so a join on
these two fields properly associates an Orders row with OrderDetails. Additional

Chapter 1 m JClass HiGrid Overview 33

information about an OrderDetails row is obtained by a detail row called Products-Categories
consisting of product information and the category this product falls into.

The JClassDemo
Database

Orders

Customers

Territories

OrderDetails

Products-
Categories

Figure 8 The meta data design of a sales order tracking system.

This structure can be captured in the data model and displayed using JClass HiGrid. The
programming example based on this model is called DemoData, in
jclass.datasource.examples.

34 Part | m Using JClass HiGrid

Running the program produces output similar to this:

E”A Dezzign Excaanple

Jesign Crample:
A Geles Omer Tracking Systen

Two dzpendent fables are bouae to each row
ard eacn oTthese laales has adefendent able Lound to it

I

|OrderD ChustornerID EmplosreeID) Orcerlate PumckaseOrdert nreher RegurzdDzte

rH b | [ir= 2 1 10500 |50 A-Fep -0
E]—_ 104 T 3 12-Dict-96 S¥1 1500106
B 1Cs 5 2 Oa- g D¢ 05 O¢-dug-0é
] 1Cs 7 5 O7-Gen-96 1594 07-Tep-56
[1y 9 3 24z S 113 2 fuetd
[Ed 108 7 2 22-Fea-R5 £36 2z-Feb-55
EH 19 4 3 1010 9% E2)| 11Tl 54

EH 110 12 4 18-Luz e 124 15-Aug-04

Figure 9 JClass HiGrid retrieves and displays the root table called Orders.

Clicking on any one of the folder icons marked “+” exposes the related tree-structured
data. This example has three levels in its meta data. The second sub-level is accessed in
the same way as the first, by clicking on the “+” expander button at the left hand side of

the row.

Chapter 1 m JClass HiGrid Overview

35

When these levels are opened, the grid looks like this:

Ei:;’ia\ Decign Example
Desigh Example:

A

B

Calzs Order Tracking System

“wo depandanitzblas are bound to each row
and cach ofthesc tohles has 2 dependenttable Eound to it

I e e e

oo e e

, e e | e
|t

| sotsomnst

Iﬁ--_i

ﬁ Dasi[Quuity |

= CPIRDIOH |25 Apr 07 | 450000
i___i

—i___i

[]—Ii Q52 GTLASKIE | 23-Apr-9T | 3820.0000

J—|i105 5 2 00-£ 1256 205 00- L ug-0

B

R

i:[- 108 7 5 075ep 86 | 105 07 Sap 06
I []

=]

Figure 10 The expanded view of the sales orders tracking system with all levels of the first two rows opened.

The example shows that JClass HiGrid gives your application the ability to present a
multi-layered view of the tables in your corporate databases. Compared to a design based
on forms, the hierarchical grid allows you to present considerable data in a relatively
small space, while also providing the organization that makes it easy for end-users to
navigate to detail levels.

36

Part| m Usi

ng JClass HiGrid

1.4.1 A Closer Look at the Data Model

1.5

There are two main areas in the design of the data model, the design-time meta data and
the run-time data tables. Of these, the most apparent to the end-user is the data table
mechanism that stores the data for subsequent display by a grid component, like

JClass HiGrid, or on a form using data bound components like those provided by
JClass Chart, JClass Field, JClass LiveTable, or JClass DataSource. Since JClass HiGrid
defines a mechanism for describing data relationships in a hierarchical way, a parallel
structure is needed to describe the way that various tables relate to each other. This is
accomplished by using Swing’s interface called TreeNode which describes the nodes of a
TreeModel, a generic interface for a Tree hierarchy. This tree interface is used for
organizing the meta data and the actual data for the JClass HiGrid. (Note: TreeMode]
contains TreeNodeModel, and Tree is a container for tree nodes.) The
DataSourceTreeNode class, combined with the MetaDataModel interface, helps to define
abstract class BaseMetaData, and then the concrete class MetaData. It is only this last one
that is source data format dependent. This forms the meta data definition mechanism.

On the data side, we also subclass from DataSourceTreeNode, but the DataTableMode]
interface is used to define BaseDataTable. DataTableModel is the interface for data
storage for the JClass HiGrid data model. The data model will request data from
instances of BaseDataTable and will manipulate that data through the DataTableMode!
interface. That is, rows can then be added, deleted or updated through this DataTable.
BaseDataTable is a default implementation of the methods and properties common to
various implementations of the DataTableModel. This class must be extended to
concretely implement those methods not implemented in it. The class that accomplishes
this is in the DataTable category, and is one of a number of specially constructed classes
specifically tailored to the source data format. A copy of the data returned in a JDBC
result table will be copied into one of these result tables so the data can be cached. Rows
can then be added, deleted or updated through this DataTable.

Internationalization

Internationalization is the process of making software that is ready for adaptation to
various languages and regions without engineering changes. JClass products have been
internationalized.

Localization is the process of making internationalized software run appropriately in a
particular environment. All Strings used by JClass that need to be localized (that is,
Strings that will be seen by a typical user) have been internationalized and are ready for
localization. Thus, while localization stubs are in place for JClass, this step must be
implemented by the developer of the localized software. These Strings are in resource
bundles in every package that requires them. Therefore, the developer of the localized
software who has purchased source code should augment all .java files within the
/resources/ directory with the .java file specific for the relevant region; for example, for
France, Localelnfo.java becomes LocaleInfo_fr.java, and needs to contain the translated
French versions of the Strings in the source LocaleInfo.java file. (Usually the file is called

Chapter 1 m JClass HiGrid Overview 37

Localelnfo.java, but can also have another name, such as LocaleBeanInfo.java or
BeanLocaleInfo.java.)

Essentially, developers of the localized software create their own resource bundles for
their own locale. Developers should check every package for a /resources/ directory; if one
is found, then the .java files in it will need to be localized.

For more information on internationalization, go to:
hitp://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html.

38 Part | m Using JClass HiGrid

http://java.sun.com/j2se/1.4.2/docs/guide/intl/index.html

2.1

2.2

Properties of JClass HiGrid

Introduction w Programming JClass HiGrid w Cell Formats and Cell Styles
Data Rows and Summary Lines wm JClass HiGrid Listeners and Events
JClass DataSource Events and Listeners wm Printing a Grid

Introduction

The various tables that comprise a database are unstructured in the sense that any one of
them can be chosen for display through some sort of data “control.” Moreover, what is or
is not a dependent table, and which fields are of interest, usually depends on some
particular user’s information needs. This structural design is up to you. Once it is
completed and the table dependencies and relevant fields are established, you use
JClass HiGrid to connect to the data source and display the results.

All of the database model-related code is contained within JClass DataSource, which is
included with JClass HiGrid. You can use HiGrid’s customizer, described in the next
chapter, to get an IDE to assist you in producing the code to connect to a database, then
define the tables, fields, and joins that define the hierarchical structure and its contents.
This chapter takes more of a programming-related standpoint. If you are interested in a
pictorial run-through of the steps necessary to connect to a database, define meta data
levels, and format both data and summary rows, read JClass HiGrid Beans, in Chapter 3,
first.

Programming JClass HiGrid

You set JClass HiGrid’s properties programmatically by referring to its API. The next
chapter shows how properties are set using a customizer. This design-time tool is a
convenient way of setting the properties because a builder tool assists you in creating the
underlying code.

The basic steps required to create a grid are:

1. Connect to a database.

2. Define the meta data levels by specifying the table hierarchy and the names of the rel-
evant fields in each table.

39

2.2.1

2.2.2

2.3

3. Set the format of the grid.

4. Handle events if you need to inspect and perhaps prohibit certain end-user actions.

This chapter is devoted primarily to issues relating to the appearance of the grid and the
outline of the event handling mechanism. An example of how to specify a database
connection without the aid of the customizer is given next, and in The DemoData
Program, in Chapter 9. Refer to JClass DataSource Overview, in Chapter 5, for details on
specifying the meta data and formulating SQL queries.

Disposing a Grid

Your application may make use of multiple instances of JClass HiGrid objects. Keeping
references to grid objects once they are no longer needed is, in effect, a memory leak. You
can recover memory by deleting all references to unused grids. Use the dispose()
method in HiGrid for this purpose.

Associating the Grid to a Data Source using JDOBC or JDBC-0DBC Drivers

The section on Loading and Registering a Driver in the JClass Desktop Views Installation
Guide showed how to register a Type 1 driver. It is possible to get an uninitialized
connection object using jclass.datasource.jdbc.DataTableConnection’s zero-
parameter constructor, but it is much more common to supply the driver, URL, login
name and password, and the database name when calling the constructor to instantiate a
connection. An example of loading a Type 4 driver follows.
c = new DataTableConnection(

"com.sybase.jdbc.SybDriver", // driver

"jdbc:sybase:Tds:Tocalhost:1498",// url

"dba",// user

"sql",// password
"JCTassDemoSQLAnywhere");// database

The String containing the data source name has the form of a URL:
jdbc:sybase:Tds:Tocalhost:1498

The subprotocol and subname vary from one supplier to another, depending on whose is

used. The JDBC DriverManager uses the subprotocol as part of its choice of driver. Other

common names for the subprotocol are “Oracle” and “odbc”. The location of the driver
itself must be specified by giving its path, which in this case is:

com.sybase.jdbc.SybDriver

Cell Formats and Cell Styles

A cell consists of a border area and a drawing area. Typically, the drawing area contains
textual information retrieved from a field in a database, but cells in header and footer
rows, before detail and after detail rows, and even summary columns appended to record

40

Part | m Using JClass HiGrid

../getstarted/index.html
../getstarted/index.html

rows usually contain information computed from the contents of a number of fields. All
these have diverse formatting requirements. JClass HiGrid provides a suite of cell editors
and renderers suitable for most purposes.

All cells that contain information extracted from a database have a data type
corresponding to that in the source. Other Java data types are included so that cells can
contain a wide selection of data types. The supported values in JClass HiGrid are
MetaDataModel . TYPE_BIG_DECIMAL, TYPE_BYTE, TYPE_BYTE_ARRAY, TYPE_DOUBLE,
TYPE_FLOAT, TYPE_INTEGER, TYPE_LONG, TYPE_OBJECT, TYPE_SHORT, TYPE_SQL_DATE,
TYPE_SQL_TIME, TYPE_SQL_TIMESTAMP, TYPE_STRING, and TYPE_UTIL_DATE.

Normally, all cells have the same insets and border style, chosen from a predefined set.
Possible border styles are jclass.higrid.Border.NONE, ETCHED_IN, ETCHED_OUT, IN, OUT,
PLAIN, FRAME_IN, FRAME_OUT, CONTROL_IN, and CONTROL_OUT. There are two sets of insets
defined for a cell. Conceptually, border insets define the placement of the border within a
cell no matter what border style is chosen. Margin insets define the writable area within
the border, usually chosen so that text will not seem to crowd against the border. Inset
objects comprise four independently settable parameters for the number of pixels to
reserve as unused space within the top, left, bottom, and right edges of the enclosing
rectangle. The four parameters are normally chosen to be equal because a centered
writable area generally has the best appearance.

Border .,

Writable Area
inthe Cell

Margin Insets

Border Insets
S el

Figure 11 Border insets and margin insets.

Note: The class constants that describe border styles are named for the way the cell
appears within its border. For instance, Border.ETCHED_IN is the constant for the case
where the cell appears etched in with respect to the border.

JClass HiGrid provides three parameters to position contents horizontally within the cell,
com.klg.jclass.cell.JCCel1Info.LEFT, CENTER, and RIGHT. To position a cell’s contents
vertically, use com.klg.jclass.cel1.JCCel1Info.TOP, CENTER, or BOTTOM.

Cell editors need to decide how large they should be in relation to the size of the cell they
are editing. Normally, a cell’s editor will adjust itself to the display size of the cell, but this
is not always possible, so HiGrid defines three possibilities: EDIT_SIZE_TO_CELL, which
fits the cell editor to the cell size, EDIT_ENSURE_MINIMUM_SIZE, which uses the cell editor's
minimum size (the default), and EDIT_ENSURE_PREFERRED_SIZE, which uses the cell

Chapter 2 m Properties of JClass HiGrid 1

editor's preferred size. These policies can be independently applied to the cell’s height
and width attributes.

You can provide an indication that a cell is too small to completely display its contents.
The small marker arrows are called clip hints. In Figure 12, if the arrow at the far right is
showing, it indicates that the width of the cell is too small, and the double arrows indicate
that the cell’s height is too small. Whether or not these arrows appear is under your
control. The possible values for clip hints are SHOW_NONE, SHOW_HORIZONTAL,
SHOW_VERTICAL, and SHOW_ALL. These constants are defined in
com.klg.jclass.cell.JCCel1Info. The position of the clip hint icons depends on which
CellInfo positioning parameter is in effect.

A

N

Figure 12 The icons that indicate that a cell’'s contents have been truncated.

There’s much more to cells, including cell editors and renderers. See Displaying and
Editing Cells, in Chapter 4, for more information.

2.3.1 Properties of JClass HiGrid’s CellFormat Class

The table shows the property names in the Cel1Format class for which get and set
methods exist. The property’s return type and default value are listed as well.

HiGrid CellFormat

Get/Set Method Return Type Default Value Description

Name

allowWidthSizing | Boolean True If false, the cell’s
width cannot be
resized.

background java.awt.Color 255,255,255 The background
color.

borderInsets java.awt.Insets [2,2,2,2] The border insets.

borderStyle int Border ETCHED_I | The border style—

N choices are listed in

this section.

cellkditor java.lang.Class (null) Retrieves or sets
the cell editor for
the current cell.

42 Part | m Using JClass HiGrid

HiGrid CellFormat
Get/Set Method
Name

Return Type

Default Value

Description

celTRenderer

java.lang.Class

(null)

Retrieves or sets
the cell renderer for
the current cell.

clipHints

int

CellInfo.SHOW_ALL

How the renderer
should draw an
indication that the
entire contents of
the cell cannot be
rendered within the
given area.

dataType

java.lang.Class

class
java.lang.Object

The cell’s data
type.

drawingArea

java.awt.Rectangle

dynamic

Read-only - the
drawing area for
the cell being
displayed or edited,
already adjusted for
BorderSize and
MarginSize — read-
only.

editHeightPolicy

int

EDIT_ENSURE_
MINIMUM_SIZE

Instruct the cell
editor which size
policy to use — see
the explanation in
this section.

editWidthPolicy

int

EDIT_SIZE_TO_CELL

Instruct the cell
editor which size
policy to use — see
the explanation in
this section.

editable

Boolean

True

Whether input is
currently allowed
in the cell.

enabled

Boolean

True

Read-only, and
always enabled.
Needed to
implement the
Cell1Info interface.

Chapter 2 m Properties of JClass HiGrid 43

HiGrid CellFormat

Get/Set Method Return Type Default Value Description
Name
font java.awt.Font dynamic The cell’s font.
fontMetrics java.awt. dynamic The cell’s font
FontMetrics metrics.
foreground java.awt.Color 0,0,0 The cell’s
foreground color.
height int dynamic The cell’s height.
horizontal int Celllnfo.LEFT The horizontal
Alignment positioning of the
cell’s contents.
marginlnsets java.awt.Insets [2,2,2,2] The insets for the
information area
within the cell —
inside the border
and its insets.
name java.lang.String (null) The name of the
cell.
otherAlTowWidth Boolean True Sets whether width
Sizing sizing is currently
allowed for the
other
header/record pair.
parent jclass.higrid. (null) The row format of
RowFormat the parent row.
preferredTotalAr | java.awt.Rectangle | [x=0,y=0,width=8, | Read-only - the
ea height=8| preferred area for
the cell being
displayed or edited.
selectAll Boolean True Whether the editor
should select all the
cell’s contents
before editing.
selected java.awt.Color 0,0,0 The background
Background color when the

cell’s contents are
selected.

44

Part | m Using JClass HiGrid

2.3.2

HiGrid CellFormat

Get/Set Method Return Type Default Value Description

Name

selected java.awt.Color 255,255,255 The foreground

Foreground color when the
cell’s contents are
selected.

text java.lang.String (null) The text label of
this object.

totalArea java.awt.Rectangle | dynamic Read-only - the
total area for the
cell being displayed
or edited.

type int MetaDataModel. The Java data type

TYPE_OBJECT used to map a

JDBC data type.

verticalAlignmen | int JCCellInfo. The vertical

t CENTER positioning of the
cell’s contents.

width int 0 The width of the
cell. Note that
setWidthisa
protected method.

If you wish to apply a new cell style to a group of cells, use the Ce11Style class. It does
not contain any dependency on the data in the cell, making it easy to copy a style to other
cells. To apply your own styles to the different types of rows in JClass HiGrid, subclass
DefaultHeaderCellStyle, DefaultFooterCellStyle, DefaultBeforeDetailsCellStyle,
DefaultAfterDetailsCell1Style, and DefaultRecordCellStyle.

Setting Border Styles

From the table you see that cell border styles are set using setBorderStyle. Border styles,
like the numerous other cell properties, are applied to individual cells. There is a
convenience method in the RowFormat class, again called setBorderStyle, that lets you
set the border style for the chosen row type, including its edit status cell. If you wish to set
the border style globally for all rows, including records, headers, footers, and so on, you
can follow the procedure outlined in FormatNodeExample. java. This example program in
jclass.higrid.examples shows how to recursively walk the grid’s format tree to set
border styles. The example program’s setBorderStyle method calls Ce11Format’s
setBorderStyle method, but it could call any other method that changes cell properties,
making global changes to them.

Chapter 2 m Properties of JClass HiGrid 45

2.4

2.4.1

If you are using an IDE, you can use the customizer to set border styles for row types. See
Setting General Column Properties, in Chapter 3.

Data Rows and Summary Lines

Besides presenting rows of data retrieved from database records, you can organize the
tables into groups that both label and summarize what they contain. Four types of rows
are available for this purpose. A table is usually introduced by a Aeader row that by default
contains the database record names for its columns. A footer row is often used to
summarize the data in one or more columns, for instance by totaling the cost of all the
individual entries in a cost_price column. Two other row types, before details and after details,
are available. They provide another level where you can place summary data.

_----
| FodwiD PrduDecipton Frodetians CutgrsiD
AMPBS AMP B5 Full Suspensq AMP B5 Full S;‘ LTE 424501

Bl 04 Afver the A htlon. of SUmmary m 1999 on0

eI 1195 | 202 AMEES 25-hpr07 |4 42450000
ProdugtID AMPES "Befuke Detail" for the Product level

| PoiwfD PodwiDescrpton PrdwiNewe CotegoylD UnitPy
AMPBS AMPESFullSwpersie AMPESFulSi MTB 2450

Y TR
Order Tor o "(.,83..5 e l 284685
—|i Nuraber of sales orders: " 100 Ruot-lalvel antel'

Figure 13 Appearance of the grid before and after the addition of summary data.

The remaining type of row is the data row: the one containing fields extracted from tables
in the underlying data source. This section describes the formats that you can apply to
these rows and shows, via code snippets, how you can add summary lines to your grid.

Row Formats

Row formats help you to display your hierarchically structured data design in a visually
appealing way. Sub-tables are indented with respect to their parents, but they may be
color coded and formatted to make them stand out, or to emphasize their relationship
with their parent.

Rows begin with a default height, but may be changed if height sizing is allowed. The row
width is simply the sum of the widths of all the cells in that row. The cell width depends

46

Part | m Using JClass HiGrid

24.2

243

244

245

on its contents. Re-sizing may be permitted. A row of a sub-table is indented by a default
amount, but the indentation may be changed by the application.

Header and Footer Formats

Header and footer formats are described by classes HeaderFormat, FooterFormat and
FooterMetaData. You have the choice of making headers repeat or not. The default is to
show the header only once, at the top of the first group of rows. This means that if a
header is applied to the rows of the root table and some of that table’s children are
exposed, there will be a header at the top of the root table but no header will be present
when the root rows begin again following the child rows. On the other hand, if
setRepeatHeader is true, each group of the rows at the level for which this property is set
has an identical copy of the header row introducing it. There can be only one footer row
for a root-level table. If a footer is added to a sub-table, there is a footer row associated
with each of these tables. Footer rows are made visible by calling setShowing(true) on
the RowFormat object for the node in question.

The width of a header cell is determined by its associated cell in the data row, but the
height, border style, and font attributes can be specified independently.

Footer rows are created on a per-table basis. At any given level, you cannot arrange for
some rows to have footers and others not. Since footer rows may contain computed data,
their meta data description is common to all of them but the contents of their cells will in
general be different.

Adding Custom Headers and Footers

You can include headers and footers for each node in the meta data structure. The code
examples in Section 2.4.5, Adding Summary Lines, show how a footer can be placed
under each of the group of rows that comprise the second child of the root table. The
overall design is shown in Figure 8 in JClass HiGrid Overview, in Chapter 1.

Column headers may be set using setColumnLabel() method. This allows you to supply
your own custom labels rather than relying on the database table name for that column.
Before Detail and After Detail Formats

Before Detail and After Detail rows are rows of one level that encompass all the children
of the next level. This distinguishes them from headers and footers, which always
surround a single table rather than a group of tables. The top level cannot have before
and after detail entries because it there is no parent with which they may be associated.

Adding Summary Lines

The points to consider when you are thinking of adding summary information to the
tables and sub-tables in your grid are:

Chapter 2 m Properties of JClass HiGrid 47

m Ensure that the information will be visible - this step is important because summary
rows are not visible by default.

m Decide what information each summary cell will contain and how the information
should be ordered.

m Create the group of column objects dictated by your design. Typically, the design will
include paired columns: a column containing a label introducing a column containing
computed summary information.

m Create the summary column.

After you have decided what information you wish to generate and have chosen a layout,
you begin your program by organizing the various objects that you need. First, obtain the
format-tree root object of your grid.

}}.Assume a HiGrid called "grid" has been instantiated
// and get the root of its format tree

ﬁé%matTree formatTree = grid.getFormatTree();
FormatNode node = (FormatNode) formatTree.getRoot();

Next, get the meta data model for the root level, the row format object for its footer row,
and the summary meta data for the footer.

MetaDataModel ordersMetaData =

(MetaDataModel) node.getRecordFormat().getMetaData();
RowFormat ordersFooterFormat = (RowFormat) node.getFooterFormat();
SummaryMetaData ordersFooterMetaData =

(SummaryMetaData) ordersFooterFormat.getMetaData();

Declare more variables that will be needed.

MetaDataModel orderDetailMetaData null;

RowFormat orderDetailFooterFormat = null;
SummaryMetaData orderDetailFooterMetaData = null;
RowFormat orderDetailBeforeDetailsFormat = null;
SummaryMetaData orderDetailBeforeDetailsMetaData = null;

Navigate to the node at which you want to place a footer.

Treelterator ti = node.getlterator();
if (ti.hasMoreElements()) {
node = (FormatNode) ti.nextElement(); // first child: Customers
node = (FormatNode) ti.nextElement(); // second child, OrderDetails
orderDetailMetaData =
(MetaDataModel) node.getRecordFormat().getMetaData();
orderDetailFooterFormat = (RowFormat) node.getFooterFormat();
orderDetailFooterMetaData =
(SummaryMetaData) orderDetailFooterFormat.getMetaData();
orderDetailBeforeDetailsFormat =
(RowFormat) node.getBeforeDetailsFormat();
orderDetailBeforeDetailsMetaData =
(SummaryMetaData) orderDetailBeforeDetailsFormat.getMetaData();

48

Part | m Using JClass HiGrid

Set up a footer for the root level.

SummaryColumn column = null;

column = new SummaryColumn("Number of sales orders:");
ordersFooterMetaData.appendColumn(column);
"OrderID",
SummaryColumn.COLUMN_TYPE_AGGREGATE,
SummaryColumn.AGGREGATE_TYPE_COUNT) ;
ordersFooterMetaData.appendColumn(column);

formatTree.setSummaryFormat(ordersFooterFormat,
ordersFooterMetaData);
ordersFooterFormat.setVisible(true);

Set up a footer for the second child of the root node.

column = new SummaryColumn("Order Total: ");
orderDetailFooterMetaData.appendColumn(column);
column = new SummaryColumn(orderDetailMetaData,
"LineTotal",
SummaryColumn.COLUMN_TYPE_AGGREGATE,
SummaryColumn.AGGREGATE_TYPE_SUM);
orderDetailFooterMetaData.appendColumn(column);

Compute the sum you wish to display.

column = new SummaryColumn("Tax Total: ");
orderDetailFooterMetaData.appendColumn(column);
column = new SummaryColumn(orderDetailMetaData,
"SalesTax",
SummaryColumn.COLUMN_TYPE_AGGREGATE,
SummaryColumn.AGGREGATE_TYPE_SUM);
orderDetailFooterMetaData.appendColumn(column);

Set the summary format and make sure the row will be visible.

formatTree.setSummaryFormat(orderDetailFooterFormat,
orderDetailFooterMetaData);
orderDetailFooterFormat.setVisible(true);

Set up the Before Details for the same node.

column = new SummaryColumn("ProductID");
orderDetailBeforeDetailsMetaData.appendColumn(column);
column = new SummaryColumn(orderDetailMetaData,
"ProductID",
SummaryCoTumn.COLUMN_TYPE_DATASOURCE) ;
orderDetailBeforeDetailsMetaData.appendColumn(column);

Set the summary format and make sure the row will be visible.

formatTree.setSummaryFormat(orderDetailBeforeDetailsFormat,
orderDetailBeforeDetailsMetaData);
orderDetailBeforeDetailsFormat.setVisible(true);

Chapter 2 m Properties of JClass HiGrid

49

2.4.6

Regenerate the run-time grid. This refreshes all the information needed to display the
grid. If you are adding summary columns dynamically to an already existing grid, the
run-time grid needs to be refreshed by the following command:

grid.resetRuntimeGrid();

The result is shown in Figure 14. The root-level footer contains two cells, the first being a
label, and the other an aggregate that counts the number of sales orders. The footer for
the second level contains two aggregates, one for the total dollar value of sales orders and
the second for the total tax.

Also shown is a Before Detail row for the second node of the first sub-level. Note that even
though its association is with the first sub-level, it makes its appearance just before the
third level headers. Before Detail and Afier Detail rows are not visible until the sub-level to
the one with which they are associated is opened.

+

‘ | |[orderpetain Quantity LinitMice

-Il-— 1182 202 WEEDL 1797-04-22 2w 2 3 1995 0000 015
=— 1182 202 LMERS 1797-04-22 20w 4.3 42420000 0.1

[[Pt [mPrticioseripsin
— |aEs | MMPESTASwpavhald

(ComTotk amses [TTudk s
g = I

1] | Ll;

" aPrndiriNama | a Categnnd " allniDrire

Figure 14 Adding a footer to the root level and summary data to a sub-table.

In short, the sequence is: get the meta data for the summary row, define a new column
cell based on the type of data it is to contain, append the cell, set the summary format,
ensure that it is visible, then reset the runtime tree.

Computed Summary Information

The easiest way to compute summary information is to override the calculate method of
the Aggregate class, just as do all the aggregate classes with predefined operations, such
as AggregateMax. Since you need to have an implementation of the Aggregate interface,
you provide a new subclass that extends AggregateAll, and override the calculate
method there.

public void calculate(RowNode rowNode) {
if (isSameMetalD(rowNode)) f{
Object quantity = getRowNodeResultData(rowNode, "Quantity");

50

Part | m Using JClass HiGrid

2.4.7

248

Object unitPrice = getRowNodeResultData(rowNode, "UnitPrice");
if (quantity != null & unitPrice != null) {
double amount = getDoubleValue(quantity) *
getDoubleValue(unitPrice);
addValue((Object) new Double(amount));

}

The way that this code is reached is to name the class in which it resides. Assume that the

name of the class is OrderDetailTotalAmount. Your calling method would issue a

command like

column = new SummaryColumn(orderDetailMetaData,
"jclass.higrid.examples.OrderDetailTotalAmount",
SummaryColumn.COLUMN_TYPE_UNBOUND,

SummaryColumn.AGGREGATE_TYPE_NONE,
MetaDataModel.TYPE _DOUBLE);

Note the second parameter. Where there would be a columnID name if one of the
predefined aggregate types were going to be used, there is a path name to the class that
performs the special calculation. As always, the CLASSPATH variable is used to provide
the first part of the path. The other parameters are chosen to be consistent with unbound
data and the data type of the result of the calculation.

Managing the Visihility of Rows

By default, a new grid shows only the root level. If you wish to expand other levels, use
openFolder. For instance, if you wish to open the first level on the first row, use:

grid.getRowTree().openfFolder(grid.getCurrentRowNode());

